260 5.7 Energia disponibile per produrre lavoro 5 I fondamenti chimico-fisici dei processi: il secondo ed il terzo principio L ENERGIA LIBERA LAVORO ED EQUILIBRIO Nei paragrafi precedenti abbiamo constatato che in un sistema isolato l entropia aumenta sempre per le trasformazioni spontanee (naturali, irreversibili) mentre resta costante per le trasformazioni reversibili (all equilibrio). Inoltre abbiamo considerato solo il lavoro connesso alla variazione di volume del sistema, trascurando altre forme di lavoro, p.e., elettrico. In questo paragrafo introdurremo due nuove funzioni di stato che ci permetteranno di valutare se una trasformazione sia spontanea o reversibile in base alle sole proprietà del sistema, indipendentemente da quelle dell ambiente. Inoltre ci permetteranno di valutare l energia disponibile (libera ) per produrre lavoro. Scriviamo il primo principio nella forma: Q = U + WT = U + WPV + WUt (5.73) dove abbiamo distinto tra lavoro totale (WT), lavoro per la variazione del volume (WPV) e lavoro utile (WUt), diverso dal precedente. 5.7.1 Energia di Gibbs Consideriamo una trasformazione isoterma ed isobara, per cui WPV = P V, e riscriviamo la (5.73): Q = U + P V + WUt (5.74) Ricordando la definizione di entalpia, sempre a T e P costanti, la precedente relazione diventa: (5.75) Q = H + WUt Introduciamo, sempre per la stessa trasformazione, il secondo principio: T S Q (5.76) in cui la diseguaglianza vale se la trasformazione è spontanea e l eguaglianza se è all equilibrio. Sostituendo la (5.76) nella (5.75) risulta: T S H + WUt che, opportunamente riarrangiata, diventa: H T S WUt (5.77) La precedente relazione ci permette sì di valutare il lavoro utile ma in funzione di tre parametri ( H, T e S), quindi così com è serve poco. Ricordando che siamo sempre a T e P costanti, scriviamo: H T S = (H2 T S2) (H1 T S1) = (H T S) WUt Poiché H, T ed S sono delle funzioni o variabili di stato anche H T S è una funzione di stato, denominata G, energia (libera) di Gibbs, grandezza estensiva con le dimensioni di un energia: G=H T S (5.78) * Dal 1990 il glossario IUPAC non utilizza più l aggettivo libera , quindi: energia di Gibbs o energia di Helmholtz.